Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.	2. Any revealing of identification, appeal to evaluator and /or equations written eg, $42+8=50$, will be treated as malpractice.

4 /9	at	186	HABI	(dep
runivas Justitute	April	aalo	A. Co	
1 ligrary	T		T	

USN

17AE73

Seventh Semester B.E. Degree Examination, Feb./Mar. 2022 Aircraft Stability and Control

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Derive an expression for wing contribution for the longitudinal static stability of an airplane 1 and discuss about the significance of CG position with respect to wing aerodynamic centre.

(20 Marks)

OR

Derive an expression for tail contribution towards the longitudinal static stability of an 2 airplane and discuss about downwash at the tail. (20 Marks)

Module-2

- Define directional static stability and explain the contribution of swept back wing towards 3 a. static directional stability. (15 Marks)
 - Briefly explain about the weather cock effect.

(05 Marks)

OR

- Explain the following terms: 4
 - a) Adverse yaw
- b) Assymmetric power condition.

(20 Marks)

Module-3

- Derive an expression for the contribution of dihedral wing towards static lateral stability. 5 (10 Marks)
 - Obtain an expression for Roll control power. b.

(10 Marks)

- Briefly explain the following terms with relevant sketches: 6
 - i)) Phugoid mode ii)) Short period mode.

(10 Marks)

Explain briefly about Aileron reversal.

(10 Marks)

Module-4

Derive the six DOF rigid body equation of motion for an aircraft.

(20 Marks)

OR

Obtain the derivatives due to change in forward speed. 8

(10 Marks)

Obtain the derivatives due to pitching velocity.

(10 Marks)

Module-5

- Write short notes on the following: 9
 - b) Spiral instability. a) Dutch roll

(20 Marks)

OR

Explain briefly about the Cooper-Harper scale. 10

(10 Marks)

Briefly, explain about the Routh's criteria.

(10 Marks)